If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2=14n-45
We move all terms to the left:
n^2-(14n-45)=0
We get rid of parentheses
n^2-14n+45=0
a = 1; b = -14; c = +45;
Δ = b2-4ac
Δ = -142-4·1·45
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4}{2*1}=\frac{10}{2} =5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4}{2*1}=\frac{18}{2} =9 $
| 72=8–8q | | (x+1)(x-7)=(x-1)2 | | f-129=367 | | 13.2+12.5x=37.2 | | 3d-2d-5=-9 | | 2x+4(x+1)‒x=5x+4 | | 20x+5.50= | | 11+6x−14=53 (15x−5) | | 4x+3=5x‒7 | | s+248=498 | | y÷ 45= 12 | | y4=12 | | 2/3x-8=56.60 | | 6x−35=29−2x | | d+120=264 | | 3(-2n-19)=-15 | | 5-x-3=4x-8 | | p+75=210.60 | | M=-8r2+11r-6T=-7-9r+14 | | 3(x-4)+7x=-82 | | 25²=125x+1 | | 720=90+90+4x | | M=-8r2+11r-6M=-7-9r+14 | | 9(4-5)=10=+4s | | 7v+10=12v | | 12x²+7x=10 | | (1)/(8))^((2-5x))=((1)/(2))^((x+13)) | | 12+12x=16x+32 | | 10x^2-25=x | | -9-9x=-25 | | 7x13=106 | | 105/x=3 |